A worldwide community photographing and learning about wildlife
mycena galopus
The cap of M. galopus is egg-shaped when young, later becoming conic to somewhat bell-shaped, and eventually reaching a diameter of 0.5 to 2.5 cm (0.2 to 1.0 in). In age it often has a margin curved inward, and a prominent umbo. The cap surface has a hoary sheen (remnants of the universal veil that once covered the immature fruit body) that soon sloughs off, leaving it naked and smooth. The cap margin, which is initially pressed against the stem, is translucent when moist, so that the outline of the gills underneath the cap may be seen, and has deep narrow grooves when dry. The color is largely fuscous-black except for the whitish margin that fades to pale gray; the umbo remains blackish or becomes dark gray, sometimes with a very pale ashy gray over all when moist, and opaque and ashy gray after drying. The flesh is thin, soft, and fragile, without any distinctive odor and taste.
Mycena galopus is a saprobic fungus, and plays an important role in forest ecosystems as a decomposer of leaf litter. It has been estimated in the UK to account for a large portion of the decomposition of the autumn leaf litter in British woodlands. It is able to break down the lignin and cellulose components of leaf litter. Grown in axenic culture in the laboratory, the fungus mycelium has been shown to degrade (in addition to lignin and cellulose) hemicelluloses, protein, soluble carbohydrates, and purified xylan and pectin using enzymes such as polyphenol oxidases, cellulases, and catalase. It is particularly adept at breaking down lignin, which is the second most abundant renewable organic compound in the biosphere, after cellulose. Research also suggests that the fungus weathers soil minerals, making them more available to mycorrhizal plants. Phosphorus, an important macronutrient influencing plant growth, typically occurs in primary minerals like apatite, or other organic complexes, and its low solubility often results in low phosphorus availability in soil. The biological activity of M. galopus mycelium can increase the availability of phosphorus and other nutrients, both as a result of soil acidification due to cation uptake and via the release of weathering agents such low molecular mass organic acids. Studies have shown that the fungus is sensitive to low concentrations of sulphite (SO32-), a byproduct of sulphur dioxide pollution, suggesting that this pollution can be toxic to the growth of the fungus (and the subsequent decomposition of leaf litter) at environmentally relevant concentrations. The fruit bodies of Mycena galopus grow in groups to scattered on humus under hardwoods or conifers. In the United States, it is very abundant along the Pacific Coast from Washington to California, and also in Tennessee and North Carolina; its northern distribution extends to Canada (Nova Scotia).In Europe, it has been collected from Britain,Germany, and Norway
Spotted in river Homem félinhos beach
3 Comments
:-) thanks Pouihi my friend,for your so kind words
at first it was what i thougth,then looking better it's the hairy cup with little drops of water of the morning humidity,thanks
Amazing macro! It almost looks as if there were mushrooms growing on mushrooms!